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Abstract

The Surface Suspended Acoustic Receiver (SSAR) is a free-drifting platform intended for use as a
receiver in large scale acoustic tomography experiments. Early prototypes of the SSAR exhibited
very poor signal-to-noise ratios in the frequency band of the hydrophones. This thesis details
efforts to reduce the hydrophone noise level by combining the analysis of experimental data with
the results from numerical models.

Experiments were conducted to quantify both the frequency content and magnitude of noise
generated on the SSAR. Through a program of sea trials and pond testing, two noise sources were
identified. The dominant source of noise in the SSAR is velocity dependent flow noise that results
from turbulent pressure fluctuations on the hydrophones. A second noise source results from
the acceleration sensitivity of the hydrophones in conjunction with high frequency accelerations
present in the hydrophone array cable. These high frequency accelerations also show a velocity
dependence. The presence of the acceleration-induced noise leads to correlations between the
signals from adjacent hydrophones, thus distorting the typical picture that flow noise should be
uncorrelated along an array. The primary methods of eliminating the noise are encapsulating
the hydrophone in a flow shield, eliminating the array cable, and slowing the system down by
replacing the wave following surface buoy with a spar buoy.

Using the experimental results, empirical relationships between hydrophone velocity and ex-
pected noise level are formed for both shielded and unshielded hydrophones. The numerical mod-
els developed as a part of this effort are then used to predict the velocities for a wide range of
possible SSAR configurations. The models can also provide information, such as system tensions,
that is useful in evaluating the longevity and survivability of SSARs. Modeled design fixes in-
clude subsurface component changes as well as comparing a wave following surface buoy to a
spar buoy.

Thesis Supervisor: Dr. Mark A. Grosenbaugh
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Chapter 1

Introduction

Acoustic tomography is a process whereby measurements of sound speed are used to determine

thermal properties of the ocean. In the ATOC (Acoustic Thermometry of Ocean Climate) and

GAMOT (Global Acoustic Mapping of Ocean Temperature) projects sound sources off the Cali-

fornia and Hawaii coasts broadcast acoustic signals to receivers which are located throughout the

Pacific ocean, some of them thousands of kilometers away. In the case of the ATOC project, these

receivers are fixed subsurface moorings (VLAs – Vertical Line Arrays) and U.S. Navy hydrophone

listening stations [4, 11]; in the case of the VLAs the data is collected only sporadically through

the use of pop-up buoys.

The receiver concept chosen for the GAMOT project uses an entirely different approach. The

receivers in this case are relatively inexpensive surface-coupled drifting systems. The possible

advantages with this approach are enlarged spatial coverage due in part to the movement of the

arrays around the ocean and in part to the increased number of receivers that can be deployed as

a result of their low cost. The surface-coupling, necessitated by accurate position fixes via GPS,

also allows for near real-time telemetry of data via ARGOS transmission [6, 17].

The problem with the SSAR that this thesis seeks to address is an artifact of this surface

coupling. As the SSAR moves up and down at wave frequencies, the array (and the attached

hydrophones) move with vertical velocities that can approach 2 m/s in relatively light seas. During

the initial design phase, these motions were considered unimportant because the wave frequencies

are well below the acoustic band of the hydrophones. However, this analysis overlooked noise

mechanisms which can transfer the low frequency wave motions into higher frequency mechanical

and acoustic signals. These higher frequency noise signals, which have as their ultimate source

13



the low frequency, wave-induced motions of the SSAR, are present throughout the acoustic band

of the hydrophone.

1.1 Current SSAR design

The original SSAR design is shown in figure 1-1. This design will serve as the baseline against

which design changes are made and performance improvements are measured. The system con-

sists of a cylindrical surlyn foam surface buoy, approximately 1.2 m in diameter and 0.75 m in

height. The snubber hose is a hollow rubber hose, laid-up out of tire cord and steel reinforcement.

The conductors run through the hose via a tightly wound, spring-like, coil-cord arrangement. The

idea behind the snubber is to provide a rugged, compliant conductor between the surface buoy and

the subsurface components. It was originally hoped that the hose would provide enough compli-

ance so as to decouple the motions of the subsurface components from the motions of the surface

buoy. The subsurface float is a fiberglass-wrapped surlyn sphere, 0.7 m in diameter. The primary

depth and strength member for the SSAR is the 500 m long plastic coated, double-armored, three

conductor electromechanical (EM) cable. Subsurface electronics are housed in a 1.8 m long, 0.25

m diameter stainless steel pressure case. The top of this case also holds the ultra-short baseline

array which is used to acoustically locate the array relative to the surface buoy for accurate posi-

tion fixing of the array. The acoustic array consists of a core of conductors wrapped by a kevlar

strength member, a nylon overbraid and a fuzzy fairing. At the bottom of the array is 10 m of wire

rope running down to the depressor weight [6, 7].

1.2 Hydrophone noise

The need for modifications to the baseline SSAR configuration pictured in figure 1-1 became

apparent after analysis of the hydrophone time series from at sea testing of prototype models.

Figure 1-2 shows the time series from one hydrophone over a two minute period with no source

signal present. The impulsive spikes represent serious noise contamination. In terms of acoustic

level, they represent a hydrophone response of 100 – 120 dB re µPa; signal levels from the source

at ranges of 2000 – 3000 km, after array and averaging gains are applied, will be at best between

80 and 90 dB re µPa, undetectable given the noise levels in the baseline design.

The bottom plot of figure 1-2 shows the bandpass filtered acceleration time series from an ac-

14
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Figure 1-1: The current standard SSAR design.
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celerometer placed near the first hydrophone on the array cable. The bandpass filtered data reflects

the acceleration energy in the same frequency band as the acoustic response of the hydrophones.

There is clearly a coincidence between impulsive high frequency acceleration events and the im-

pulsive spikes in the hydrophone time series. This suggests that the hydrophone noise may be, at

least in part, due to hydrophone sensitivity to accelerations and the presence of a mechanism for

the generation of high frequency accelerations.

1.3 History of noise mitigation efforts

1.3.1 Snap loads

One such possible mechanism for the generation of high frequency accelerations given forcing

only at much lower ocean wave frequencies is snap loading. Snap loads occur when the low

frequency (wave-induced) motions of the system are such that one or more of the cable segments

in the system goes slack and then retensions. At the moment of retensioning, an impulsive load,

with broadband frequency content, is generated.

Early model results indicated that even in relatively light seas system motions were large

enough to create slack events in the snubber hose and that these snaps were capable of generating

high frequency accelerations at the hydrophones. In light of this result, increasing the sinker

weight to add additional static tension throughout the system was proposed as a simple and cost-

effective way to reduce the noise. This hypothesis was tested during sea trials by deploying both

a baseline SSAR and a SSAR with an extra 400 pounds at the sinker.

The baseline results from these tests are shown in figure 1-3. The top plot shows the acceler-

ations measured at the subsurface float (the bottom of the snubber hose); the second plot shows

the same accelerations bandpass filtered into the 35 – 110 Hz band of the hydrophones. The very

large spikes are evidence of the float being jerked around by impulsive snap loading. Many of the

snaps at the subsurface float also appear to correspond to noise spikes in the hydrophone data.

The results from the tests with additional sinker weights are shown in figure 1-4. In this

case, the snap loads appear to have been eliminated, just as the model predicted. However, the

hydrophone noise actually seems to have gotten worse – with some noise spikes so large that they

are clipped (at � 2 volts).

In reviewing the model results in light of the at-sea test data, it is obvious that by underesti-

mating the damping in the EM cable the effects of snap loading were overestimated. The snap
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Figure 1-5: Scatter plot showing the relationship between array vertical velocity and hydrophone
noise level.

loading hypothesis was only partially correct. There were snap loads in the system, but they were

not a significant cause of the high frequency accelerations at the hydrophones. It is important to

note, however, that eliminating the snaps is still a desirable goal because the large tension spikes

associated with a snap load can lead to ultimate or fatigue failure of system components.

1.3.2 Recent efforts

Subsequent analysis of the data from the sea trials showed that in addition to being coincident

with impulsive high frequency accelerations, the hydrophone noise was strongly linked to the

low frequency, wave-induced vertical velocities of the hydrophones. An illustration of this link

is shown in figure 1-5 which shows the hydrophone signal level plotted against array vertical

velocity for a random sampling of data points from four different time series, covering two distinct

SSAR configurations. Such a relationship between acoustic noise level and the velocity of the

hydrophone elements through the water is suggestive of flow-induced noise.

Flow noise results from the irregular flow over the hydrophones and the subsequent forma-

tion of turbulent eddies. The near-field, pseudo-sound portion of the flow noise results from the

pressure fluctuations exciting vibrations in the hydrophone wall; these pressure induced vibrations

result in a signal from the hydrophone element (which is after all nothing more than a pressure

20



hydrophone 1 hydrophone 2 hydrophone 3
hydrophone 2 0.612 x x
hydrophone 3 0.402 0.605 x
hydrophone 4 0.176 0.324 0.698

Table 1.1: Cross-correlations between hydrophone time series from a 20 second time period with
minimal clipping in all four hydrophone channels. The data is taken from a baseline deployment
during the September, 1995 sea trials.

level sensor). There is also a radiated, far-field (true sound) component of flow noise which results

from the coupling of the turbulent fluctuations into propagating acoustic modes. This second type

of flow noise is relatively weak in comparison to the noise generated in the near-field, especially

at low velocities and low frequencies [9, 12].

That the dominant source of noise may be flow noise is one of the critical lessons that can be

learned from the SSAR noise reduction effort. Flow noise was initially ruled out as a noise source

because the noise between hydrophones was correlated. Given a portion of data with relatively

little clipping in the hydrophone signals, the cross-correlations between adjacent hydrophones are

quite high (table 1.1). For the full time series (i.e., keeping portions that have clipped data in

them) the correlations are still as high as 0.2 and 0.3. Because flow noise results from a localized,

turbulent process, it will generally appear as uncorrelated along the length of an array. That the

hydrophone signals are sometimes well correlated on the SSAR suggests that the acceleration-

induced component of noise imposes a degree of correlation on the total noise signal.

A second reason that flow noise was at first discounted as a possible noise source was the early

failure of attempts to shield the hydrophones from flow noise. Immediately after the link between

noise and low frequency velocity became apparent, a design modification was made which en-

capsulated each hydrophone in a two inch diameter rigid tube with faired endcaps. Encapsulating

the entire array in a smooth urethane tube was also tried. Both of these designs were sea tested,

neither resulting in any noise reduction1 . The early attempts at shielding were made before there

was an accurate picture of just what the noise sources were; when the shielding did not eliminate

the noise, the early conclusion was that there must not have been any flow noise to eliminate,

rather than the conclusion that the flow shielding simply was not adequate. Better experimental

evidence is now available which indicates that the primary source of noise on the SSAR is flow

1 In fact, the noise appeared to get worse, perhaps due to increased acceleration-induced noise.

21



noise; evidence is also available to indicate the level of flow shielding that is necessary to reduce

the flow noise on the SSAR.

1.4 Design variations

Howe et al [10] proposed a spar buoy for their acoustic tomography drifter in order to minimize

hydrophone motions. For this same reason, one of the major design changes considered for the

SSAR is replacing the current surface buoy with a spar buoy. As an alternative, less radical,

velocity reduction measure, the effect of a second snubber hose in series with the first is explored.

In addition to lowering velocities, there is both theoretical and experimental evidence that

the near-field component of flow noise can be reduced asymptotically to zero by increasing the

hydrophone size [9]. To apply this idea to the SSAR, the six element array can be replaced by a

single, flow-shielded hydrophone rigidly mounted to the bottom of the subsurface pressure case.

The flow shield will effectively increase hydrophone size by increasing the separation between

the flow and the hydrophone element. This approach to the flow shield avoids the problems of

the early flow shield designs because the flow shield can be made much larger (thus removing the

hydrophone much further away from the flow) once the hydrophone is removed from the array.

Design modifications to reduce snap loading include increasing sinker weight and removing

the subsurface float. All of these changes have advantages and disadvantages in terms of cost,

ease of implementation, longevity of the systems when deployed, and ultimately, effectiveness as

a noise reduction measure.

1.5 Overview of the thesis

Chapter 2 gives the details for the time- and frequency-domain numerical models that were de-

veloped to simulate the vertical motions, accelerations, velocities and tensions of the SSAR over

a wide range of configurations. Chapter 3 presents the methods and results from the experi-

ments which were used to identify and quantify the sources of the high frequency noise in the

hydrophones. In chapter 4, the experimental results are combined with results from the numerical

model to develop a noise model that can be used to quantify the expected noise level in a variety of

proposed SSAR configurations. Conclusions and recommendations for future work are presented

in chapter 5.
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Chapter 2

Numerical models

Both frequency- and time-domain models were used to analyze the SSAR. Frequency domain

models are useful for design studies in that they can give a quick, statistical picture of basic

system behavior. Given a high sea state ocean storm as input, the frequency domain model can be

used to compute a spectrum of tension. From this spectrum, a statistical maximum design tension

is easily calculated. The frequency domain tension results can also be used to derive a statistical

measure of the probability of snap loading. Given a sea spectrum that describes typical operating

conditions, the frequency domain model can predict the root mean square velocities of the system

components or the frequency with which certain critical velocity transition points are exceeded

under those conditions.

The time domain model is useful for analyzing nonlinear behaviors that cannot be fully ana-

lyzed with the frequency domain model, such as snap loads. The time domain model results also

provide the input into empirically determined predictors of noise level on the SSAR. These rela-

tionships are derived from experimentally collected time series and are thus most easily applied to

time domain data.

2.1 Frequency domain model

The idealization and numbering scheme for both frequency and time domain models is shown in

figure 2-1. The frequency domain model considers the system as a series of n continuous elastic

segments (snubber hose, EM cable, array, and wire rope) with lumped masses (subsurface float,

E-pack, shackle, and sinker weight) at the bottom of the various segments and a surface buoy at the

top of segment n. For each segment j and each mass at the bottom of that segment the following
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3: E-pack

4: subsurface float

5: buoy

1: wire rope

2: array

3: EM cable

4: snubber hose

2: shackle

1: sinker weight

Figure 2-1: Idealized model and numbering scheme for the SSAR system. Note that the number-
ing for both masses and cable segments proceeds from the sinker upwards, not from the surface
downwards.

definitions are made. uj
�
z j � t � is the displacement coordinate from the equilibrium position along

the segment (z j is positive up and has its origin at the bottom end of the segment). U j
�
t � is the

displacement of the mass from equilibrium. m j, b j , and r j are the mass, equivalent linearized

damping constant, and structural damping constant (all per unit length) of the segment. M j and B j

are the virtual mass and equivalent linear damping constant of the lumped mass; EA j is the axial

stiffness of the segment. L j is the length of the segment.

At the sinker weight (the terminal lumped mass), the equation of dynamic equilibrium is

M1
d2U1

dt2 � B1
dU1

dt � EA1
∂u1

∂z1

����
z1 � 0 �

(2.1)

For any other submerged lumped mass (the E-pack or the subsurface float),

M j
d2U j

dt2 � B j
dU j

dt � EA j
∂u j

∂z j

����
z j � 0

� EA j 	 1
∂u j 	 1

∂z j 	 1

����
z j 
 1 � L j 
 1

� (2.2)

and for the surface buoy the expression of equilibrium is

MB
d2UB

dt2 � BB
dUB

dt � ρgAwpUB �
� EAn

∂un

∂zn

����
zn � Ln

� FB
�
t � � (2.3)

24



where FB
�
t � is the wave force on the surface buoy and Awp is the waterplane area of the surface

buoy. Along any segment j the equilibrium condition is stated as

m j
∂2u j

∂t2 �
�
b j � r j � ∂u j

∂t � EA j
∂2u j

∂z2
j �

(2.4)

Assuming harmonic forcing at the buoy with magnitude F̂B and corresponding harmonic solu-

tions for the displacements throughout the system, the solutions will be of the form

u j
�
z j � t � � eiωt � C2 j 	 1 cosk jz j � C2 j sink jz j � � (2.5)

and

U j
�
t � � Û je

iωt � (2.6)

where the C j and Û j are complex constants to be determined and

k j �
m jω2 � iω

�
b j � r j �

EA j �
(2.7)

After substituting equations 2.5 and 2.6 into the equilibrium equations (equations 2.1 through 2.4)

the time dependence can be eliminated by dividing through by the exponential term. By then

taking advantage of the fact that u j
�
0 � � U j (and thus the fact that Û j � C2 j 	 1) the following

linear system of equations can be derived
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0 � C1
���

ω2M1 � iωB1 � � C2EAk1 � (2.8)

0 � C1 coskL1 � C2 sinkL1
�

C3 �
0 � �

C1EAk1 sinkL1 � C2EAk1 coskL1 � C3
� �

ω2M2 � iωB2 � � C4EAk2 �
0 � C3 coskL2 � C4 sinkL2

�
C5 �

... � ...

0 � �
C2n � 3EAkn � 1 sinkLn � 1 � C2n � 2EAkn � 1 coskLn � 1� C2n � 1

���
ω2Mn � iωBn � � C2nEAkn �

0 � C2n � 1 coskLn � C2n sinkLn
�

ÛB �
F̂B � �

C2n � 1EAkn sinkLn � C2nEAkn coskLn � ÛB
�	�

ω2Mn � iωBn � ρgAwp ��

As a system in 2n � 1 equations and 2n � 1 unknowns, the magnitude of the response at any of the

lumped masses at a given excitation frequency, ω, can be determined by solving this linear system for C1

through C2n and ÛB. Transfer functions can be constructed for the various system components to harmonic

wave forcing by solving the system over a range of frequencies assuming a unit force magnitude at each

frequency.

2.1.1 Linearized damping

Because the desired result from the model is the response of the SSAR system to a random sea, the output

of the model needs to be a transfer function that can be used in linear system theory along with an input

spectrum to calculate the performance measures that will quantify the merits of a given design. For this

purpose, the damping coefficients must be linearized in a way that accounts for the nonharmonic nature of

the input spectra. In such a case, the damping constants are linearized in terms of spectral parameters and

are given by Faltinsen [3]

beq � 2σv

�
2
π 
 1

2
ρC f πd � � (2.9)

Beq � 2σv

�
2
π 
 1

2
ρCDS � � (2.10)

where CD is the bluff body drag coefficient for a massive system component, S is the projected frontal

surface area of the component, C f is the frictional drag coefficient of a cable segment, d is the diameter of

that segment and σv is the standard deviation of the velocity for that component.

With this linearization, the solution process must be iterative. An output spectrum is assumed and an
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initial value for σv calculated. The resulting linearized damping coefficients are used in the calculation of

the motion at a series of frequencies. The resulting transfer function and the input spectrum are then used to

calculate the actual output spectrum and corresponding value of σv. The iteration stops when the calculated

and guessed values of σv converge.

2.2 Time domain model

The time domain model is also based on the idea of a series of continuous elastic members with additional

lumped mass (and drag) at the connection between segments. In the time domain, however, each elastic

member is treated as a sequence of idealized one-dimensional mass-less springs with small lumped masses

at the nodes between springs. The system is discretized as one long heterogeneous cable into a large number

of nodes and elements with all of the cable mass and damping lumped onto nodes; several nodes have

additional mass and damping assigned due to the presence of massive system components. The differential

equations of motion for the system are discretized using finite differences in space and time. The model

allows for the possibility of different spatial discretizations (∆z can vary with segment), but assumes a

constant time step ∆t throughout the course of the simulation.

For this kind of idealization, there is only one coordinate system running from the sinker to the surface.

The sinker weight is node one and the surface buoy is node nn (where nn is not related to n, the number

of different cable segments that make up the system). For convenience of notation the subscript s will be

used to indicate which segment a node is on. Ms and Bs are always used to describe the properties of the

massive system component at the bottom of segment s. The model is fully nonlinear and thus Bs and bs in

the difference equations below are simply notationally convenient:

Bs � 1
2

ρ � CD � s Ss � (2.11)

bs � 1
2

ρ � C f � s πds 
 (2.12)

Also for notational convenience, the wet weight of lumped mass system components and wet weight per

unit length of a segment are denoted as Ws and ws, respectively.

In the difference approximations, u j
i indicates the displacement of node i from the unstretched position

at time step j. In this notation the differenced equilibrium equation for the sinker weight is written as


 M1 � m1
∆z1

2
� �

u j � 1
1

�
2u j

1 � u j � 1
1

∆t2 � (2.13)

� µ 
 B1 � b1
∆z1

2
� �

u j � 1
1

�
u j � 1

1

2∆t � 2

� r1
∆z1

2

�
u j � 1

1

�
u j � 1

1

2∆t � � EAa
1

�
u j

2

�
u j

1

∆z1
� � 
 W1 � w1

∆z1

2
� 
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For a subsurface component at node i between segments s
�

1 and s,


 Ms � ms
∆zs

2 � ms � 1
∆zs � 1

2
� �

u j � 1
i

�
2u j

i � u j � 1
i

∆t2 � (2.14)

� µ 
 Bs � bs
∆zs

2 � bs � 1
∆zs � 1

2
� �

u j � 1
i

�
u j � 1

i

2∆t � 2

� 
 rs
∆zs

2 � rs � 1
∆zs � 1

2
� �

u j � 1
i

�
u j � 1

i

2∆t � � EAa
s

�
u j

i � 1

�
u j

i

∆zs
��

EAb
s � 1

�
u j

i

�
u j

i � 1

∆zs � 1
�� 
 Ws � ws

∆zs

2 � ws � 1
∆zs � 1

2
� 


At the surface buoy, the equilibrium condition is


 MB � mn
∆zn

2
� �

u j � 1
nn

�
2u j

nn � u j � 1
nn

∆t2 � (2.15)

� µ 
 BB � bn
∆zn

2
� �

u j � 1
nn

�
u j � 1

nn

2∆t � 2


 B j
w � rn

∆zn

2
� �

u j � 1
nn

�
u j � 1

nn

2∆t � � �
EAb

n

�
u j

nn
�

u j
nn � 1

∆z1
� � F j

w� 
 WB � wn
∆zn

2
� 
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Finally, for any plain nodal point along any of the cable segments,

ms∆zs

�
u j � 1

i

�
2u j

i � u j � 1
i

∆t2 � (2.16)

� µbs∆zs

�
u j � 1

i

�
u j � 1

i

2∆t � 2

� rs∆zs

�
u j � 1

i

�
u j � 1

i

2∆t � � EAa
s

�
u j

i � 1

�
u j

i

∆zs
� �

EAb
s

�
u j

i

�
u j

i � 1

∆zs
� �

ws∆zs 

µ is a constant used to fix the sign of the quadratic drag terms because the drag force is really of the form

D � u̇
�
u̇
�
,

µ � ��� �� � 1 � whenu j
i � u j � 1

i�
1 � whenu j

i � u j � 1
i

(2.17)

F j
w is the wave exciting force on the surface buoy and B j

w is the coefficient of linear wave damping at time

step j.

The EA terms are superscripted either with an a (above) are a b (below) to account for the the possibility

that a cable can go slack when it is under zero tension. When the spatial gradient of the motion is positive

above or below a node then the tension is positive and EAa � b
s � EAs. If the gradient is negative, the axial

stiffness of the cable above or below that node is set to zero, EAa � b
s � 0. Mathematically, these conditions

are formulated as

EAa
s � ��� �� EAs � whenu j

i � 1 � u j
i

0 � whenu j
i � 1 � u j

i

EAb
s � ��� �� EAs � whenu j

i � u j
i � 1

0 � whenu j
i � u j

i � 1

(2.18)

Given an initial displacement at time t � 0 and time t � �
∆t (time steps 0 and -1) for all of the nodes

(generally taken as the static equilibrium position of all the nodes when the system is in water), the motion

at time step 1 is calculated by rearranging the difference equations of motion into nn quadratic equations

in u1
i and solving each equation explicitly. Generally, at any time step, j, the motions at time step j � 1 are

computed by solving nn independent quadratic equations. For each of the four types of difference equations

given above, the solutions to the quadratic equations are written as

u j � 1
i � �

c2 �
	 c2
2

�
4c1c3

c2
� (2.19)
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where for the sinker

c1 � µ
4∆t2 
 B1 � b1

∆z1

2
� � (2.20)

c2 � �
M1 � m1

∆z1
2

∆t2 � � µ
2∆t2 
 B1 � b1

∆z1

2
� u j � 1

1 � r1

4∆t
∆z1 �

c3 � � EAa
1

∆z1

�
2

�
M1 � m1

∆z1
2

∆t2 ��� u j
1 � � �

M1 � m1
∆z1
2

∆t2 � � r1

4∆t
∆z1 � u j � 1

1� EAa
1

∆z1
u j

2 � µ
4∆t2 
 B1 � b1

∆z1

2
��� u j � 1

1 � 2 � 
 W1 � w1
∆z1

2
� �

for a system component between cable segments

c1 � µ
4∆t2 
 Bs � bs

∆zs

2 � bs � 1
∆zs � 1

2
� � (2.21)

c2 � �
Ms � ms

∆zs
2 � ms � 1

∆zs 
 1
2

∆t2 � � �
rs

∆zs
2 � rs � 1

∆zs 
 1
2

2∆t �� µ
2∆t2 
 Bs � bs

∆zs

2 � bs � 1
∆zs � 1

2
� u j � 1

i �
c3 � � EAa

s

∆zs
� EAb

s � 1

∆zs � 1

�
2

�
Ms � ms

∆zs
2 � ms � 1

∆zs 
 1
2

∆t2 ��� u j
i

� EAa
s

∆zs
u j

i � 1

� EAb
s � 1

∆zs � 1
u j

i � 1

� � �
Ms � ms

∆zs
2 � ms � 1

∆zs 
 1
2

∆t2 � � �
rs

∆zs
2 � rs � 1

∆zs 
 1
2

2∆t ��� u j � 1
i

� µ
4∆t2 
 Bs � bs

∆zs

2 � bs � 1
∆zs � 1

2
��� u j � 1

i � 2 � 
 Ws � ws
∆zs

2 � ws � 1
∆zs � 1

2
� �

for the surface buoy

c1 � µ
4∆t2 
 BB � bn

∆zn

2
� � (2.22)

c2 � �
MB � mn

∆zn
2

∆t2 � � µ
2∆t2 
 BB � bn

∆zn

2
� u j � 1

nn � rn

4∆t
∆zn �

c3 � � EAb
n

∆zn
� ρgAwp

�
2

�
MB � mn

∆zn
2

∆t2 ��� u j
nn � � �

MB � mn
∆zn
2

∆t2 � � rn

4∆t
∆zn � u j � 1

nn� EAb
n

∆zn
u j

nn � 1 � µ
4∆t2 
 BB � bn

∆zn

2
� �

u j � 1
nn � 2 � 
 WB � wn

∆zn

2
� �

F j
B �
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and for a regular nodal point, i, along segment s

c1 � µ
4∆t2 bs∆zs � (2.23)

c2 � ms∆zs

∆t2

� µ
2∆t2 bs∆zsu

j � 1
i � rs∆zs

2∆t �
c3 � 
 EAa

s � EAb
s

∆zs

� 2ms∆zs

∆t2 � u j
i

� EAa
s

∆zs
u j

i � 1

� EAb
s

∆zs
u j

i � 1

� 
 ms∆zs

∆t2

� rs∆zs

2∆t
� u j � 1

i � µ
4∆t2 bs∆zs � u j � 1

i � 2 � ws∆zs 

2.3 Wave forcing

In considering possible configurations for the SSAR two possible types of surface buoys need to be consid-

ered. The first possibility is the short, squat cylindrical surlyn foam buoy currently in use on the SSARs;

the second possibility is a spar buoy.

2.3.1 Wave following buoy

Frequency domain simplification

For the initial SSAR designs, it is possible to treat the surface buoy as a perfect wave follower and thus

simply use wave motion instead of wave force as the system input. The underlying assumption in such a

simplification is that the interaction between the surface buoy and the hose below the buoy does not play

a role in the first natural mode of the system and that it is this first mode which is preferentially excited

by surface waves. The higher frequency modes in which the surface buoy dynamics do play a role can

be ignored because of the lack of higher frequency input energy in a typical sea spectrum. This approach

saves having to develop a model of the wave exciting force, damping, and added mass for the surface buoy.

With this approach, a harmonic solution for UB is specified with a knownÛB; the last equation in the linear

system (equation 2.8) is no longer needed and the 2nth equation simply becomes

ÛB � C2n � 1 coskLn � C2n sinkLn 

Time domain simplification

Like the frequency domain model, the development of a model of wave forcing can be avoided by assuming

that the surface buoy is a perfect wave follower and simply specifying surface wave motion as the model

input. In this case, there is no need to solve for u j � 1
nn ; it is specified based on the wave record.

The wave record is constructed from a random sea spectrum for a given sea state by breaking the

spectrum into a summation of individual frequency components with separate amplitudes and random
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phases [3]. For example, a Bretschneider spectrum, specified with a modal frequency, ωm, and signifi-

cant height, Hs,

S � ω � � 1 
 25
4

ω4
m

ω5 H2
s e � 1 � 25 � ωm

ω � 4 
 (2.24)

can be discretized over a range of frequencies, ωi, with a spacing of ∆ω. The amplitude of the ith component

is

Ai � �
2S � ωi � ∆ω 
 (2.25)

The total wave amplitude at the buoy is the sum of all the discrete wave components

A j
B � N

∑
i � 1

Ai sin � jωi∆t � t0 � φi � 
 (2.26)

t0 is a constant chosen such that A0
B � 0 at t � 0; this is to minimize the transient effects that would result

from a sudden sharp change in the buoy position at model start-up. The random phases, φi, are generated

as uniform random numbers on the interval � � π � π � . The update equation for the actual motion of the buoy

is simply

u j � 1
nn � A j � 1

B � u0
nn 
 (2.27)

2.3.2 Spar buoy

Frequency domain solution

Because the entire motivation for considering a spar buoy is that it does not follow the waves (in fact its

motions will be substantially smaller than the surface waves), the simple wave follower assumption cannot

be applied for model systems with a spar buoy. Instead, a model for the interaction between surface waves

and the motions of the spar buoy, and between the motions of the spar buoy and the SSAR components

hanging below it, must be developed.

Newman [15] provides a convenient derivation for the linearized equations of motion (heave, pitch, and

surge) for a freely floating spar buoy with harmonic forcing. This derivation can be modified to include the

effects of the tension members hanging below the buoy. For the free floating spar buoy, the equations of

motions are

mζ̈ � 1
2

ωm2k
ρχ2H2 ζ̇ � 1 �

Q0 � k � χkH � 2 � ρgS � 0 � ζ � iρgS � 0 � Aeiωt � 1 �
χkHQ0 � k � � � (2.28)

2ξ̈ � P1ψ̈ � 1
2

ωm2k3

ρ
Q0 � k ��� ξ̇Q0 � k � � ψ̇Q1 � k ��� � 2ω2AeiωtQ0 � k � � (2.29)

�
Ky

2 � P2 � ψ̈ � P1ξ̈ � 1
2

ωm2k3

ρ
Q1 � k ��� ξ̇Q0 � k � � ψ̇Q1 � k �	� � gP1ψ � 2ω2Aeiωt Q1 � k � 
 (2.30)

ζ, ψ, and ξ are the heave, pitch, and surge, respectively. Ky
2 is the radius of gyration of the buoy. H is the
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buoy draft. k and ω are the wavenumber and frequency of the harmonic input, respectively. S � z � is the buoy

cross-sectional area as a function of depth, with z � 0 at the mean free surface and z � �
H at the bottom of

the buoy. χ is the vertical prismatic coefficient,

χ � m
ρHS � 0 � 
 (2.31)

Pn and Qn � k � are constants defined as

Pn � ρ
m � 0� H

� z � zG � n S � z � dz � (2.32)

Qn � k � � ρ
m � 0� H

ekz � z � zG � n S � z � dz � (2.33)

where zG is the vertical coordinate of the center of gravity. The assumptions made in deriving these equa-

tions are that the radius at z � �
H is zero, the slope of the cylinder sides is slowly varying and continuous,

and that the radius is small compared to the wavelength of incident waves. Equations 2.32 and 2.33 can be

evaluated analytically for S � z � defined in a piecewise linear fashion (Appendix A).

To modify these equations for the SSAR model the vertical tension force from the cable below the buoy

must be incorporated into the heave and pitch equations. In the pitch equation, this requires that the tension

be linearized about its static value by dropping the harmonically varying moment caused by the dynamic

tension. That dynamic tensions are small for a SSAR with a spar buoy is a reasonable assumption given

the significantly lower wave-induced motions associated with a spar buoy. Recognizing that UB � ζ and

proposing harmonic solutions for pitch and surge of the form

ψ � ψ̂eiωt � (2.34)

ξ � ξ̂eiωt � (2.35)

the last equation in the linear system becomes

iρgS � 0 � A � 1 �
χkHQ0 � k � � � �

C2n � 1EAkn sinkLn � C2nEAkn coskLn� ÛB � � ω2Mn � iωBn � 1
2

ωm2k
ρχ2H2 ζ̇ � 1 �

Q0 � k � χkH � 2 � ρgS � 0 ��� 
 (2.36)

and an independent 2 � 2 system of equations for pitch and surge is added to the problem

� � P1 � 1
2

im2k3

ρ
Q0 � k � Q1 � k � � ψ̂ � � � 2 � 1

2
im2k3

ρ
Q0

2 � k � � ξ̂ � 2Q0A � (2.37)
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� � �
Ky

2 � P2 � � 1
2

im2k3

ρ
Q1

2 � k � � P1

k
� T0

�
H

�
zG
� � ψ̂ (2.38)

� � � P1 � 1
2

im2k3

ρ
Q0 � k � Q1 � k ��� ξ̂ � 2Q1A 


Time domain solution

Because the coefficients derived above for the frequency domain solution are difficult to apply in the time

domain1 the time domain model uses Froude-Krylov theory and the Haskind relations to calculate wave

exciting and damping forces [16]. Using a slender body approximation,

d
H

� O � ε � � (2.39)

hydrodynamic force terms only up to order ε2 are retained. This approach neglects the O � ε4 logε � added

mass, damping, and exciting force contributions that come from the body scattering potential.

The Froude-Krylov component of the exciting force is obtained by integrating the pressure field of the

incident wave over the surface of the spar buoy,

F � t � � � 0� H

dS
dz

p � z � t � dz 
 (2.40)

Assuming linear incident waves and a linearized form of Bernoulli’s equation, the pressure can be written

as

p � z � t � � ρgAekz sinωt � (2.41)

and equation 2.40 becomes

F � t � � ρgAsinωt � S � 0 � �
S � � H � e � kH

�
k � 0� H

S � z � ekzdz � 
 (2.42)

Horizontal variations in pressure are neglected because d is small with respect to the incident wavelength.

If the incoming wave field is given by equation 2.26, then the total exciting force at time step j is

F j
w � N

∑
i � 1

�
F j

w � i � (2.43)

where �
F j

w � i � ρgAi sin � jωi∆t � t0 � φi � � S � 0 � �
S � � H � e � kiH

�
ki � 0� H

S � z � ekizdz � 
 (2.44)

Like the integral for the P and Q coefficients in the frequency domain model, the integral in this equation

can easily be evaluated analytically for S � z � piecewise linear.

1 Simple superposition does not apply because the time domain model never comes to a true steady-state and thus the
result at each discrete frequency is not simply the regular wave solution.
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To prevent an uncontrolled resonance from the contributions with frequencies near the natural fre-

quency of the spar buoy, an O � ε4 � approximate damping term is reintroduced using the Haskind rela-

tions [16]. For a three-dimensional axisymmetric body, the wave damping reduces to

B j
w � N

∑
i � 1

ki

4ρgV i
g

�
�
�
F j

w � i

�
� 2 
 (2.45)

2.4 Model validation

2.4.1 Wave follower assumption

In order to test the validity of the assumption that the standard SSAR surface buoy is a wave follower,

two different types of frequency domain comparisons were performed. In the first comparison, the trans-

fer function for subsurface case motion was calculated assuming unit amplitude motion input (the wave

follower assumption). This result was compared to a transfer function computed using the wave forcing

model, with surface buoy exciting force, damping, and added mass coefficients computed using a numeri-

cal technique [8]. The two transfer functions are shown in the left panel of figure 2-2. The most obvious

difference is the divergence after about 0.6 Hz. This difference is a result of the mode represented by the

spring-like buoyancy restoring force at the buoy that is not present in the model using the wave following

assumption. Models using the wave follower assumption are essentially neglecting any energy that enters

the system through this mode (or that is removed via the damping in this mode). The peak at the 1.7 second

period (roughly equal to the heave natural frequency of the surface buoy) for this mode is approaching the

high frequency limit of the input wave energy.

To further quantify the error introduced by the wave follower assumption, output spectra for the above

two cases were also computed. The output spectra are shown in the right panel of figure 2-2. Because the

two transfer functions showed substantial agreement over low frequencies, the two output spectra are nearly

identical. The large divergence observed in the transfer functions after 0.6 Hz is not present in the output

spectra because there is very little wave energy in the input spectrum at those higher frequencies.

2.4.2 Frequency domain output spectra

A comparison of frequency domain model results and spectral data from at sea accelerometer records is

shown in figure 2-3. To make the comparison, the vertical motion of the surface buoy during the experiment

was calculated by integrating the accelerations recorded by the vertical axis of a three-axis accelerometer

that was located in the surface buoy. Then, a motion spectrum was computed using an 8192 point Hanning

window over the 36000 point time series. Next, a model transfer function between surface motion and sub-

surface case acceleration was computed on the same frequency grid as the spectrum of experimental surface

motion. The motion spectrum was multiplied by the square of the modeled transfer function. The resulting
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Figure 2-2: Comparison of model results for frequency domain calculations using the wave follow-
ing assumption and wave forcing coefficients for a baseline SSAR configuration. The left panel
shows the transfer function between surface wave amplitude and subsurface case acceleration.
The right panel shows the output spectra of subsurface case acceleration given a Bretschneider
spectrum (significant height 3.6 m, peak period 9.7 seconds) as input at the surface.
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Figure 2-3: Modeled and experimental output spectra for acceleration of the subsurface case in
the system with extra sinker weight.

model output spectrum for pressure case acceleration can be compared to an acceleration spectrum that

was computed from the acceleration time series recorded by a single axis (vertically aligned) accelerometer

located within the subsurface case during the experiment.

The comparison is quite good across the 0 – 1 Hz region. The observed and predicted natural frequen-

cies are the same to within the 0.03 Hz resolution of the FFT. The model result is slightly smaller than the

experimental data over most frequencies, suggesting that the linearized damping model in the frequency

domain calculation underestimates the actual level of damping in the system. The comparison can only

be accurate to within the limits of the wave follower assumption because the wave follower assumption is

implicit in the treatment of the integrated surface buoy accelerations as the record of surface wave motions.

2.4.3 Time domain acceleration results

The time domain model was validated by comparing the result of a numerical experiment that used the

integrated surface motions discussed above as input and the actual motions of the subsurface components

recorded during that sea trial. The result is shown in figure 2-4. After eliminating the start-up transients

from the numerical computation, the results appear to be nearly identical. The only obvious errors in the

numerical result are some reduction in the overall magnitude of some of the highest acceleration peaks and

some overshoot in a few others.
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Figure 2-4: Comparison of accelerometer data from at-sea tests with model results generated by
forcing the system with the actual surface motion from the at-sea test.

Position Velocity Acceleration
freq time freq time freq time

pressure case 0.0827 0.0802 0.0555 0.0532 0.0389 0.0387
subsurface float 0.0812 0.0788 0.0544 0.0521 0.0380 0.0377

spar buoy 0.0616 0.0604 0.0403 0.0377 0.0275 0.0263

Table 2.1: Standard deviation of motion variables for time and frequency domain models using
a spar buoy given the same spectrum as input. Units are m (position), m/s (velocity) and m/s2

(acceleration).

2.4.4 Comparison of time and frequency domain spar buoy results

In order to validate the simplifications made in the time domain model for the spar buoy against the more

rigorously derived frequency domain model, statistical results from both models given the same Bretschnei-

der spectrum as input were compared. For a sea state 4 (significant height 2.1 m, peak period 7.7 seconds)

and a 100 second time series from the time domain model, the results in terms of standard deviations are

shown in table 2.1.

The very close agreement between the two models indicates the closeness between the frequency- and

time-domain derivation of forcing. The forcing in both models is based on a Froude-Krylov type pressure

integration. Much of the added complexity of the frequency domain model comes from the incorporation

of pitch and surge. The damping in the frequency domain is more rigorously derived, but the Haskind

approximation provides an adequate approximation in the time domain. Any error in the damping in either
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model would be difficult to discern because of the fourth-order dependence.

2.4.5 Damping coefficients

Bluff body and skin friction drag coefficients (CD and C f ) were determined from published values for

components that are similar to those used on the SSAR [2]. The structural damping coefficient for the

snubber hose was determined experimentally. A hose was suspended from a crane (in air) and instrumented

with accelerometers at the top and bottom flanges. A hammer was then used to impulsively excite the

system at the top flange. The damping coefficient in a frequency domain model of this simple system was

then manipulated until the model transfer function matched the transfer function derived from the spectra

of the two accelerometer records.

Early model results did not have any structural damping in the electromechanical cable. After review-

ing the results from initial sea trials, it was clear that by neglecting damping in the cable the models were

overestimating the effect that a snap in the hose could have on the subsurface components (subsurface pres-

sure case and array elements). In subsequent models, the structural damping constant was increased to its

maximum reasonable value to provide as much filtering of snap events as possible. Reasonable in this case

refers to a damping level that keeps the model results in line with observed experimental values. Unfor-

tunately, the structural damping could not be increased to a point where the snap effects were completely

eliminated at the pressure case and still maintain the proper level of pressure case motions. For this reason,

time-domain model acceleration results that are presented in subsequent chapters have had an additional

low-pass filter applied as a post-processing step. This filter is applied only when it is clear that the snap

events were in the hose and not in the electromechanical or array cables themselves.
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Chapter 3

Experimental Identification of Noise

Sources

3.1 Noise in an array mounted hydrophone

The data from the initial sea trials can provide a basic relationship between velocity and noise for a hy-

drophone that is mounted on the array cable. Figure 3-1 shows the hydrophone noise power versus velocity

and frequency for the SSAR system with extra sinker weight during the September, 1995 sea trials. This

plot was generated by sliding a 64 point window over the time series of the response from hydrophone one

and array vertical velocity (as integrated from the vertical component of a tri-axial accelerometer mounted

on the array). For each window, the mean velocity and the power spectral density of the hydrophone re-

sponse in the 35 – 110 Hz band were computed. The results were binned into a velocity/frequency grid and

averages were computed using the total number of results in each bin.

The acceleration-induced portion of the noise in figure 3-1 can be separated from the total noise by

considering the acceleration equivalent noise power. Acceleration equivalent noise power is the signal

level from the hydrophones that is due solely to accelerations in the 35 – 110 Hz frequency band. It

is calculated using the signal level from the vertical axis of the tri-axial accelerometer and the known

acceleration response of the hydrophones (-30 dBV re G). This result is shown in figure 3-2. Unfortunately,

the accelerometer data from the sea trials is somewhat limited in that the tri-axial accelerometer had a

mechanical shockmount that attenuated signals above 70 Hz and the analog front-end for the accelerometers

had some filtering in it that also attenuated signals starting at about 70 Hz. The filtering is not sufficient

to completely remove signals in the 70 – 110 Hz range, but it may account for the reduction in equivalent

noise level with frequency that is evident in the higher frequencies of figure 3-2.

The total hydrophone noise (figure 3-1) is larger than the acceleration equivalent noise (figure 3-2)

across all velocities and frequencies. The total hydrophone noise represents the superposition of both
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Figure 3-1: Noise in hydrophone one as a function of velocity during at sea testing of the system
with extra sinker weight. Note that the color scale and horizontal axis scaling are the same for all
of the color noise plots in this chapter.
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Figure 3-2: Acceleration equivalent noise as a function of velocity during at sea testing of the
system with extra sinker weight.
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acceleration-induced and flow-induced noise. That the difference at the higher velocities may be as much

as 30 dB suggests that flow noise is the dominant contribution in the hydrophone noise. However, the

acceleration-induced noise power alone, 90 – 100 dB at low frequencies and velocities greater than 1.5 m/s,

is high enough that both noise sources need to be eliminated in order to make the SSAR functional.

Another important observation in comparing figures 3-1 and 3-2 is the performance at near zero veloc-

ity. In general, the flow noise should approach zero at very low speeds; if there is noise at low speed then

the hope would be that it was acceleration- rather than flow-induced. This is clearly not the case for the

unshielded, array-mounted hydrophones on the SSAR. Near zero velocity, the acceleration-induced noise

of the SSAR is very low, approximately 70 dB in a band-averaged sense. This is lower than the expected

80 – 85 dB ocean ambient noise expected in the test area due to distant shipping [18]. The hydrophone

noise is approximately 90 dB at near zero speeds. One possible explanation for noise even at low vertical

velocities is the presence of a current. A current is capable of exciting flow noise either directly, by creating

turbulence as it flows over the hydrophones, or indirectly by exciting flow-induced vibration of the array

and thus causing horizontal oscillations of the hydrophones.

3.2 Noise in a flow-shielded hydrophone

3.2.1 Flow shield design

In response to the high levels of both flow- and acceleration-induced noise in the system tested during the

first sea trials, a radically different array concept was proposed. The concept is to remove the array and

move a single hydrophone into a large flow shield and attach the shield rigidly to the bottom of the pressure

case (figure 3-3). The idea behind the new design is two-fold. One, removing the array cable eliminates the

acceleration-induced noise generated locally on the array; accelerometers mounted inside the pressure case

during the sea trials contained none of the high frequency acceleration signals that were evident in the array

mounted accelerometers. Secondly, the flow shield provides a barrier between the irregular, turbulent flow

(and resulting pressure fluctuations) and the hydrophone. At low frequencies ( � 500 Hz), it is the vibration

of the hydrophone wall, excited by turbulent pressure fluctuations, which is the dominant contributor to

flow noise; the radiated, far-field component (i.e., the true sound), which the flow shield does not protect

against, is only of secondary importance [9]. The shield consists of a wire mesh enclosure packed with open

cell foam. The hydrophone is packed deep within the center of the foam, which is acoustically transparent

when flooded.

3.2.2 Low ambient flow noise experiments

In order to quantify the flow noise reduction potential of the flow shield, experiments were conducted at

the U.S. Army’s Aberdeen Test Center (ATC) in Aberdeen, Maryland. The Underwater Explosives Test
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Figure 3-3: The prototype flow shield and pressure case and the test rig at the Briar Point Test
Facility.

Facility (UTF) at ATC maintains an isolated pond at their Briar Point Test Site which has a very low

background noise level. The tests were conducted from a barge located over the deepest (approximately 15

m) part of this pond. The test apparatus is shown in the right panel of figure 3-3. The subsurface pressure

case, with a single flow-shielded hydrophone rigidly mounted to it was either pulled upwards or dropped

downwards in the pond to generate flow over the hydrophone at speeds comparable to (and greater than)

the velocities observed during sea trials. Tests with no motion showed an ambient noise level in the pond

of approximately 72 dB re µPa across the 35 – 110 Hz band of interest. This is significantly lower than the

80 – 85 dB expected ambient noise levels in the open ocean. The low ambient noise floor allows for the

quantification of noise even at low speeds.

Figure 3-4 shows the hydrophone noise for both the upwards and downwards moving tests. The noise

is significantly lower than for the hydrophone mounted on the array. For a velocity of 1.0 m/s the noise in

the array-mounted hydrophone is approximately 110 dB at low frequencies, and no less than 100 dB at high

frequencies. At the same speed, the flow-shielded hydrophone has a noise level of less than 80 dB for all

frequencies, with levels approaching the 72 dB ambient at high frequencies.

3.2.3 Sea trial results

The single flow-shielded hydrophone design was sea tested in March, 1997. Figure 3-5 shows the hy-

drophone noise recorded during the trials as a function of velocity and frequency. The maximum noise is

a peak at about 50 Hz that increases to approximately 100 dB at upward velocities of 1.5 m/s. This com-
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Figure 3-4: Hydrophone noise during the shielded flow noise experiments in a pond with low
ambient noise.
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Figure 3-5: Hydrophone noise during the at-sea tests with a shielded hydrophone.
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pares to a noise level of approximately 120 dB across a broader frequency band at the same speeds for the

array-mounted hydrophone (figure 3-1). It is not as low as the noise level recorded during the Aberdeen

test.

The flow noise from the sea trials looks qualitatively similar in shape to the noise from the Aberdeen

tests (figure 3-4). The major difference between the two is a reduction in noise power over all velocities

and all frequencies for the experiments conducted in the pond. This suggests that the full SSAR system,

even with no array cable, still has sources of mechanical noise; sources that were not present in the system

consisting just of the pressure case tested at Aberdeen. The sinusoidal nature of the motion during at-

sea deployments may be responsible for creating such a source, as the resulting oscillatory inertial and

hydrodynamic pressure forces on the hydrophones may have caused them to work loose within the foam.

Any subsequent motion and rubbing of the hydrophones within the foam would act as a noise source. Such

an effect is unlikely to have occurred during the Aberdeen tests because each run only took from five to

fifteen seconds to complete and the forces were unidirectional during the run.

3.3 Noise as a function of velocity

To formulate an empirical model of noise which could be easily applied to data calculated from the numer-

ical models detailed in chapter 2, band-averaged noise power (across the 35 – 110 Hz band) was computed

at each of the velocity levels in the noise plots shown in figures 3-1, 3-2, 3-4, and 3-5. For each case, the

results were then plotted on a logarithmic velocity scale and three velocity regimes were defined subjec-

tively by eye – a flat, ambient region, a transition region, and a completely velocity dependent region. In the

ambient region the noise levels were simply averaged to give a flat noise level up to the transition point. In

the transition and velocity dependent regions, linear least-squares fits were made to each set of data points.

The final critical velocities between the regimes were defined as the intersections of the lines fitted to each

regime.

In figure 3-6, the first onset of noise above the noise minima for the unshielded hydrophone on the

array occurs at 0.2 m/s; the steepest, fully velocity dependent regime begins at approximately 0.55 m/s.

The very steep slope of the noise and the low speeds at which the noise begins to rise sharply is indicative

of the severe noise problems in the baseline array design. The noise in this case is proportional to V 4 � 95, an

exponent which is consistent with typical values that are reported in the literature for flow noise. Arakeri

et al [1] cite experimental evidence to derive a fifth power of velocity dependence for flow noise at the

stagnation point of an axisymmetric body. For this same case, Lauchle [13] reports that the exponent

should be between 6 and 7.5. Legendre [14] uses theoretical arguments to derive a sixth power dependence

for the noise generated by a turbulent boundary layer. Such close agreement between the noise relationships

derived for the SSAR and previous research on flow noise strongly supports the assertion that the primary

noise source for the baseline array is flow noise.
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Figure 3-6: Band averaged noise model for a hydrophone attached to the SSAR array cable.

Figure 3-6 and the model for acceleration-induced noise in figure 3-7 confirm the earlier observation

regarding figures 3-1 and 3-2 – that the hydrophone noise even at near zero speeds is unacceptably high.

This high level cannot be explained by the acceleration-induced component which is more than 20 dB lower.

While the onset of acceleration-induced noise occurs at approximately the same point (0.2 m/s), the slope

of the acceleration-induced noise is only half that of the flow noise.

The noise model for a single shielded hydrophone during the sea trials is shown in figure 3-8. In this

case the noise near zero velocity is at a level consistent with ocean ambient. The flow shield delays the

onset of noise to approximately 1.0 m/s and also reduces the slope after onset by almost a factor of two

compared to the unshielded, array-mounted hydrophone.

As figure 3-7 presents a picture of pure acceleration-induced noise (or as nearly pure as possible given

the current data set), figure 3-9, using the data from the Aberdeen experiments, presents as pure a picture

as possible of flow-induced noise. The slopes for acceleration-induced noise (noise � V 2 � 51) and the hy-

drophone noise from the shielded sea trials (noise � V 2 � 61) are quite close, suggesting that there was indeed

a mechanical (acceleration) noise source in the flow shield used during the March, 1997 sea trials. The

slope of the flow noise from the Aberdeen tests (noise � V 3 � 36) is larger than this, but still lower than the

V 4 � 95 of the unshielded hydrophones. This suggests that both flow and mechanical noise were present in the

flow-shielded hydrophone during the Aberdeen tests, but that the mechanical noise was not large enough to

be the dominant source. This situation could occur if there was a small amount of mechanical noise present

along with the residual flow noise that the flow-shield did not prevent.
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Figure 3-7: Band averaged acceleration equivalent noise model for a hydrophone attached to the
SSAR array cable.
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Figure 3-8: Band averaged noise model for the flow shield encased hydrophone attached to the
SSAR bottom pressure case during sea trials.
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Chapter 4

Modeling Noise Reduction

This chapter presents results that combine the numerical model predictions of system motion with the exper-

imentally derived relationships between velocity and hydrophone noise. The two tools can be used together

to generate a table that gives the noise performance, as well as other important performance measures such

as the prevalence of snap loading, for a wide variety of system configurations. For completeness, the table

includes both configurations that have already been tried and discarded as unacceptable and those which

are currently still being considered as possible SSAR designs.

4.1 Evaluating performance

4.1.1 Noise

When discussing the noise performance of the SSAR it is important to have a target maximum allowable

noise level. The original tomographic calculations for the SSAR were based on a range of 3000 km, an

ambient of 80 dB and no additional flow- or mechanically-induced noise [5]. For every six dB of noise

(either ambient or self-noise), the range at which the SSAR can measure an optimal number of arrivals from

the source is halved. At a cost of some accuracy, fewer numbers of arrivals can be used in the tomographic

calculations.

The SSAR processes incoming acoustic signals by averaging over a ten minute time period. For this

reason, modeled noise levels are computed by running a ten minute time series of modeled hydrophone

velocity through the appropriate noise model (figure 3-6 or figure 3-8) and averaging the resulting noise

level over that ten minute period. Sea state averaged noise levels are computed by averaging the noise level

in each of sea states 2 – 8, weighting each sea state with the probabilistic fraction of time that it occurs over

one year. Both the weighting factors and the significant heights and modal periods for each sea state are

shown in table 4.1.

Once the band- and time-averaged noise level for each configuration in each sea state has been com-
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sea state

significant
height (m) peak period (s)

probability of
sea state

2 0.3 6.3 6.40
3 0.88 7.5 15.50
4 1.88 8.8 31.60
5 3.25 9.7 20.94
6 5.0 12.4 15.03
7 7.5 15.0 7.00
8 11.5 16.4 1.56

Table 4.1: Parameters for each of the modeled sea states. Data is taken from the mean and most
probable North Pacific values in table 2.3 of Faltinsen [3]. Sea states greater than 8 and less than
2 are not modeled; they account for a 1.37 percentage probability of occurrence.

puted, the noise level can be related to the RMS hydrophone velocity calculated from the frequency domain

model for the same configuration and sea state. The advantage of such a relationship is that the RMS veloc-

ity can be very quickly computed. The time domain model takes approximately 90 minutes to generate 10

minutes of simulated motion for a single configuration in a single sea state on a 200 MHz Pentium Pro com-

puter. In contrast, the frequency domain model can compute an RMS velocity for the same configuration

in the same sea state in less than three seconds.

The frequency domain model can also be used to compute the number of times per ten minute averaging

period that the velocity exceeds a critical value, v0, such as 0.5 m/s for hydrophones on an array or 1.0 m/s

for a flow-shielded hydrophone. Given the spectral moments of velocity, M v
0 ( � σv) and Mv

2, the upcrossing

rate, n � v0 � , in units of events per ten minutes is given by

n � v0 � � 600
2π

�
Mv

2

Mv
0

e � v0 � 2Mv
0 
 (4.1)

4.1.2 Longevity and survivability

In addition to the noise performance of a given configuration, several other parameters that affect overall

performance and longevity must also be considered. In each sea state the frequency domain model can be

used to calculate a spectrum of tension for each configuration. Using the spectrum from the extreme sea

state (sea state 8) a maximum design tension can be calculated as the static tension plus an extreme dynamic

tension [8],

T 1 � 1000 � 3 
 97σ8
T � (4.2)

where σ8
T is the standard deviation of tension in a sea state 8 and T 1 � 1000 is the average of the 1/1000

highest tensions expected during such a storm. From the tension results across all the sea states, the number
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d (m) m (kg/m) E (N/m2) C f r (kg m/s)
wire rope 0.008 0.193 8 
 3 � 1010 0.005 0

array 0.015 0.243 7 
 6 � 109 0.06 0
EM cable 0.013 0.320 3 
 0 � 1010 0.005 0.2

hose 0.104 9.61 4 
 0 � 106 0.03 3.0

Table 4.2: Properties of the types of cable used on the SSAR.

M (kg) Ma (kg) buoyancy (N) S (m2) CD

sinker 109 1.6 160 0.016 1.0
shackle 0.5 0.0 0.0 0.0 0

pressure case 147 9.11 1000 0.052 1.2
subsurface float 49.7 117.8 2310 0.454 0.6

flange 32.0 3.7 246 0.028 1.2

Table 4.3: Properties of the lumped mass components used on the SSAR. M is the mass of the
component; Ma is the added mass of the component. M � Ma equals the virtual mass used in the
equations of chapter 2.

of expected snap events per year in each cable member can also be computed

n � 365 � 24 � 3600
8

∑
j � 2

f j

2π �
��� M j

2

M j
0

e � T0 � 2M j
0 � (4.3)

where T0 is the effective static tension in the member, M j
2 and M j

0 are the moments of the spectrum of

tension in the member in sea state j and f j is the fraction of time in one year that sea state j occurs (from

table 4.1). Finally, because marine growth is a potential problem, the total available reserve buoyancy of

each configuration will be considered.

4.2 Modeled configurations

Tables 4.2 and 4.3 lists the mechanical properties of the cables and components used in the modeled SSAR

configurations. The notation matches that used in chapter 2 except where noted. Table 4.4 details the way in

which the above listed components were pieced together to form each of the different model configurations.

4.2.1 Component changes

Configurations 1 – 4 are all variations of the baseline SSAR. The full 60 m array cable is present and the

wave following buoy is at the surface. The first configuration is simply the baseline SSAR. The expectation
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1 2 3 4 5

sinker sinker � 3 sinker sinker � 3 pressure case � 180
wire rope wire rope wire rope wire rope EM cable
shackle shackle shackle shackle subsurface float
array array array array hose

pressure case pressure case pressure case pressure case wave follower
EM cable EM cable EM cable EM cable

subsurface float subsurface float flange subsurface float
hose hose hose hose

wave follower wave follower wave follower flange
hose

wave follower

6 7 8 9 10

pressure case � 90 sinker pressure case+90 pressure case+90 pressure case
EM cable wire rope EM cable EM cable EM cable

flange shackle subsurface float subsurface float flange
hose array hose hose hose

wave follower pressure case 6 inch spar 8 inch spar 8 inch spar
EM cable

subsurface float
hose

8 inch spar

Table 4.4: Layout, from the bottom up, of cables and components for each of the modeled SSAR
configurations. Multiplier listed after the inclusion of a sinker indicate that the mass, added mass,
buoyancy and surface area were all increased by that multiple for that configuration. An additional
number after the pressure case indicates an additional amount of mass (in kilograms) added inside
the case.
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is that it will be noisy and have significant numbers of snap events. Configuration 2 is the same as the

baseline except for the addition of approximately 480 lbs at the sinker weight. This is the configuration

that was sea-tested in September, 1995, the experimental results from which the array mounted hydrophone

noise model (figures 3-1 and 3-6) was generated. The idea behind the additional sinker weight is to reduce

the snap loading, not to reduce the velocities. Configuration 3 is simply another way to achieve a reduction

in snap loading; removing the subsurface float has about the same effect on the hose static tension as adding

410 lbs of sinker weight.

Configuration 4 presents the first attempt at reducing both snap loading and velocities. The sinker

weight is increased and an additional hose is placed in series with the top snubber hose. The first mode of

the wave following SSAR can be roughly computed by treating the hose as a single spring and everything

below it as a single mass. If Keq � 1250 N/m and Meq � 1000 kg then a second hose in series would move

the natural period from about 5.6 seconds to about 8 seconds and away from the region of highest wave

energy in the lower sea states.

4.2.2 Single hydrophone solution

Given the goal of a noise level no greater than 80 dB it is clear from figures 3-1 and 3-2 that the performance

of SSARs with an array cable is unacceptable; the noise levels in the noise model (figure 3-6) are almost

constantly above 90 dB and with any significant motion quickly exceed 100 dB. Configurations 5 – 10 are

designs based on removing the array and replacing it with a single flow-shielded hydrophone. Configura-

tions 5 and 6 maintain the wave following surface buoy and configurations 8 – 10 replace the wave follower

with a spar buoy. For the wave following designs, the weight that had been at the sinker must be moved

up to the bottom pressure case because snap loading in the hose is still a concern. Configuration 5 retains

the subsurface float and adds 400 lbs at the pressure case; configuration 6 removes the subsurface float and

only adds 200 lbs at the pressure case. Configuration 6 represents the system used during the March, 1997

sea trials, from which the shielded hydrophone noise model (figure 3-8) was generated.

4.2.3 Spar buoy

The basic shape of the spar buoy used in the models is shown in figure 4-1. The design is based on

maximizing the advantages provided by a spar buoy (which means maximizing draft to reduce wave exciting

forces and minimizing diameter to increase the natural period of heave) while working within some practical

constraints to insure that the buoys will be inexpensive, relatively easy to build and deploy, and will have

sufficient reserve buoyancy. The design consists of a 12.2 m (40 ft) aluminum pipe with the 1.8 m long

topside pressure case attached to the bottom. The 40 ft length was chosen as a compromise between

performance and ease of assembly, shipping (it will fit inside a standard shipping container) and at sea

deployment. There is a surlyn wrap around the pressure case to provide buoyancy and fix the total draft of
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topside
electronics case

surlyn wrap

aluminum pipe

Figure 4-1: Schematic of the proposed spar buoy design.

the buoy at 10 m. There is 4 m of freeboard in the design to keep the antennas dry with most passing waves

and to provide sufficient reserve buoyancy.

Configuration 7 is the first to use a spar buoy in place of the wave follower currently in use on the

SSAR. For comparison purposes, configuration 7 uses the original array cable; it is the same as the baseline

SSAR except for the change in the surface buoy. Configurations 8, 9, and 10 use a single flow shielded

hydrophone. Configuration 8 uses a six inch outer diameter pipe and configuration 9 uses an eight inch

pipe. Though the probability of snap loads is greatly reduced with a spar buoy, both configurations have

an extra 200 lbs at the pressure case. Without the additional weight, the hose would be slack in the static

configuration. Configuration 10 removes the subsurface float rather than adding weight to keep the hose

under tension.

4.3 Discussion

4.3.1 Hydrophone noise

Table 4.5 summarizes all of the noise results for each configuration considered. The noise model for con-

figurations 1 – 4 and 7 is shown in figure 3-6. For configurations 5, 6, and 8 – 10 the appropriate model

is figure 3-8. As expected, the configurations using a single flow shielded hydrophone have significantly

lower noise levels than configurations using unshielded hydrophones on an array cable. Within array-based

configurations, number 4, which used an extra snubber hose to reduce velocities, was only marginally suc-

cessful – with only two to three dB improvement in sea state averaged noise and approximately eight dB in
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Sea State 4 Sea State 6

configuration avg noise max noise avg noise max noise
sea state

averaged noise

1 97.96 120.13 102.70 128.09 99.13
2 99.96 122.14 106.04 129.99 101.51
3 99.46 123.34 105.39 131.28 101.07
4 97.37 114.85 103.13 123.76 98.92
5 80.66 88.66 81.94 93.09 81.11
6 80.85 89.89 82.22 94.42 81.34
7 92.51 93.77 95.40 107.89 93.62
8 80.08 80.08 80.08 80.08 80.08
9 80.08 80.08 80.09 81.16 80.10

10 80.08 80.08 80.09 81.13 80.11

Table 4.5: Noise results for each of the modeled SSAR configurations.

maximum instantaneous noise over configurations with comparable hose static tensions (configurations 2

and 3). The results for configuration 7 are another good example of why the SSAR simply will not perform

well with an array cable; even with the very low speeds associated with the spar buoy design, the noise is

still 10 – 15 dB higher than desirable on average, with peaks that are more than 30 dB greater than the target

level.

In comparing designs that use a flow shielded hydrophone, it appears that the flow shield performs

sufficiently well at sufficiently high velocities, that the performance of the much slower moving spar-topped

configurations (8 – 10) is not significantly better than configurations using the wave follower (5 – 6) in

terms of the average noise results. All of the configurations using the flow shield have average noise levels

near the ambient given the noise model from the March, 1997 sea trials. The difference in performance

is in the maximum noise levels achieved during the ten minute averaging periods. Configurations 5 and

6 (wave following) have maximum noise levels of almost 90 dB in sea state 4 and 94 dB in sea state 6.

Configurations 8 – 10, using a spar, have noise maxima that are at the ambient or just slightly above the

ambient for the noise model.

Another way to consider the noise levels, particularly in terms of average versus maximum noise levels,

is to consider the standard deviations and upcrossing rates of velocity shown in table 4.6 for all configura-

tions. The reason behind the low noise maxima for the spar based models is evident from the small number

of times that the velocity exceeds the critical 1.0 m/s level determined by the noise model (figure 3-8).

Alternatively, the standard deviation of velocity can be viewed as analogous to the standard deviation of

noise. Given this interpretation it is natural that the noise maxima for the spar designs should not be much

beyond the noise mean. For the wave following designs the standard deviation of velocity can be as much

as five times higher and thus even with low average noise there will be some relatively high noise peaks.
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Sea State 4 Sea State 6
configuration σv (m/s) n(0.5 m/s) n(1.0 m/s) σv (m/s) n(0.5 m/s) n(1.0 m/s)

1 0.697 90.67 41.89 1.067 84.21 60.57
2 0.725 80.43 39.43 1.113 76.51 56.54
3 0.742 97.16 49.19 1.127 89.49 66.63
4 0.537 59.81 16.27 0.909 63.77 40.49
5 0.787 94.09 51.36 1.187 87.03 66.68
6 0.830 106.65 61.91 1.250 98.33 77.36
7 0.140 0.11 0.00 0.430 26.30 3.46
8 0.043 0.00 0.00 0.248 6.06 0.01
9 0.152 0.29 0.00 0.473 29.65 5.53

10 0.156 0.35 0.00 0.470 29.51 5.41

Table 4.6: Hydrophone velocity results for each of the modeled SSAR configurations. Upcrossing
rates are per ten minute averaging cycle.

4.3.2 Low ambient modeling

As a final point of consideration, it is informative to apply the noise models with lower ambient noise floors

(figures 3-7 and 3-9) to the velocity results of our model configurations. The results of plotting σv (from

frequency domain results) against time–averaged noise (computed using the low ambient noise models and

the time domain model results) for each configuration in each sea state is shown in figure 4-2. The noise

model that was applied in this case is shown in figure 3-9. Figure 4-3 does the same thing for acceleration

equivalent noise power from figure 3-7.

Given that the lowest resolvable noise levels in both of figures 3-9 and 3-7 are much lower than expected

ocean ambient levels, figures 4-2 and 4-3 represent what could be achieved by “optimally” shielded SSAR

designs. For instance, if a smaller shield, with flow noise reduction properties similar to the current shield,

was developed that could encapsulate the hydrophones on the array cable then the noise level would be

dictated by the acceleration-induced noise shown in figure 4-3. In conjunction with a spar buoy, such a

design would have noise levels below 80 dB and have the advantage of the full array.

If, on the other hand, the mechanical aspects of the current shield could be improved such that the

at-sea noise reduction approached the noise reduction achieved during the Aberdeen experiments, the noise

would be dictated by a relationship like that shown in figure 4-2. Both spar and wave following buoys can

perform acceptably with such a design. With a spar buoy, both the instantaneous and the average flow noise

would be lower than ocean ambient in the majority of conditions.

4.3.3 Mechanical performance

Table 4.7 details the important tension statistics for each of the ten model configurations. The results

for snap loading are consistent with expectations. It is interesting to note that the statistical prediction

for the baseline design (configuration 1) translates to a snap event with almost every passing wave. This is
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Figure 4-2: Band averaged noise from the low ambient noise model as a function of RMS velocity
for each configuration in each sea state.
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Figure 4-3: Band averaged equivalent noise from the acceleration equivalent noise model as a
function of RMS velocity for each configuration in each sea state.

61



configuration
snap events

per year
hose extreme

total tension (N)
EM cable extreme
total tension (N)

reserve
buoyancy (N)

1 4770799 9515 6436 5294
2 294122 12208 9177 3476
3 36441 10224 6892 3404
4 42513 11283 7730 3169
5 1508498 10238 6651 4493
6 27804 9608 5875 3485
7 89507 3194 3448 1305
8 8587 1932 2747 734
9 146928 3149 3169 1305

10 0 3595 2229 1305

Table 4.7: Tension results for each of the modeled SSAR configurations.

consistent with observations from sea trials (figure 1-3) and is yet another good illustration of the importance

of adding static tension in the hose. In comparing configurations 2 and 3, it appears that the better method

of achieving this goal is to remove the subsurface float as this does a significantly better job at reducing

snap loads for a smaller increase in extreme design tensions.

A second advantage of a spar buoy, in addition to the much lower velocities already discussed, is the

much lower tensions that result from the low levels of motion. The configurations using a spar buoy have

extreme hose tensions that are as low as one-fifth of the wave following designs. Tensions in the elec-

tromechanical cable are generally smaller by at least a factor of two. Configurations 8 and 10 in particular,

with their very low snap frequencies (zero for configuration 10) and low extreme tensions, look particularly

attractive in terms of system longevity based on both ultimate and fatigue failure criteria.

Table 4.7 also shows the one obvious advantage of the wave following buoy in its larger reserve buoy-

ancy. The six-inch spar buoy which has such good velocity, noise, and tension numbers has only about half

the reserve of the eight-inch spar designs and a fifth of most of the wave following designs.
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Chapter 5

Conclusions and Recommendations

5.1 Deployed SSAR systems

The laboratory and at-sea experiments clearly revealed that the SSAR will not perform satisfactorily if the

flow-induced noise is not removed. Flow induced noise can easily exceed 100 dB, 10 – 20 dB higher than

is acceptable, in relatively low sea-states (vertical velocities of no more than 0.7 m/s). As a consequence,

the design chosen for the final six SSARs to be deployed in late 1997 should go as far as possible in trying

to eliminate flow noise.

Without an additional research effort to develop an effective, compact, array-mounted flow shield, the

advantage offered by the six element array should be sacrificed for the single hydrophone in the large,

pressure case mounted flow shield. This approach also removes any acceleration-induced noise associated

with hydrophones mounted to an array cable. Additionally, if maximum performance is to be achieved, the

wave following surface buoy should be replaced with a spar buoy. A spar buoy will yield additional benefits

in terms of system longevity due to reduced motion and tension levels throughout the system.

In order to reduce snap loads in the system, it has already been decided that the subsurface float will

be removed and 200 extra pounds added at the subsurface pressure case. The extra 200 pounds essentially

replaces the sinker weight that was removed along with the array. This should keep snap loads in the

electromechanical cable to a minimum. The subsurface float will be removed, at the cost of a very slight

increase in velocities as noted in chapter 4, to provide additional static tension in the hose. This brings the

static tension in the hose up to the same level as in the sea trials with extra sinker weight – a level known to

be consistent with a large reduction in the number of snap loads.
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5.2 Recommendations for future work

The question of the exact source of the acceleration-induced noise is still open. Further research into this

area will require a carefully controlled series of experiments with variable sinker masses in a laboratory

setting with low mechanical and electrical noise. The interaction between the acceleration-induced noise

and the flow noise, and the correlation between the noise signals from adjacent hydrophones that may be

resulting from this interaction could also be explored in such a setting.

Though the time domain model proved accurate both in terms of predicting low frequency wave in-

duced motions and the occurrence of snap loads, the way in which a snap load propagates through the

system was never fully modeled in this effort. Increasing damping in the electromechanical cable to pro-

vide filtering of snap events that occurred in the hose was not practical because the increased damping

resulted in erroneously low predictions for the low frequency motions. An additional numerical mechanism

is required that will act as a true low-pass filter.

It would also be interesting for future modeling and experimental efforts to explore the accurate mod-

eling of the spectrum of the impulse that results from a snap event. Knowing both the shape and the mag-

nitude of the spectrum as a function of material properties and tension levels is an important consideration

in determining the practical implications of snap loading in a system.
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Appendix A

Evaluation of Integrals used in the Spar

Buoy Modeling

In the frequency domain model the equations for P1, P2, Q0 � k � , and Q1 � k � (equations 2.32 and 2.33) can

be analytically integrated given S � z � defined in a piecewise linear fashion in N
�

1 intervals. Figure A-1

illustrates the notation for the case of the spar used in the model SSAR configurations with four intervals.

On the ith interval, from zi to zi � 1, S � z � is written as

S � z � � S � zi � � βi � z � zi � � (A.1)

where βi is defined as

βi � S � zi � 1 � �
S � zi �

zi � 1
�

zi

 (A.2)

By substituting this into the integrals of equations 2.32 and 2.33 and breaking the integral into pieces over

the intervals of the spar, the integral over each interval can be evaluated directly and the results summed

over the intervals.

For P1 and P2, the resulting summations are

P1 � ρ
m

N � 1

∑
i � 1

� zG � βizi
�

S � zi � � � � zi � 1
�

zi � (A.3)

� � S � zi � �
βi � zi � zG � � �

z2
i � 1

�
z2

i

2 � � βi

�
z3

i � 1

�
z3

i

3 � �
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Figure A-1: Piecewise linear geometric description of a spar buoy.

P2 � ρ
m

N � 1

∑
i � 1

�
z2

G � S � zi � �
βizi ��� � zi � 1

�
zi � (A.4)

� � zG � βizG
�

2S � zi � � 2βizi � � �
z2

i � 1

�
z2

i

2 �
� � S � zi � �

βi � zi � 2zG � � �
z3

i � 1

�
z3

i

3 � � βi

�
z4

i � 1

�
z4

i

4 � 

For Q0 � k � and Q1 � k � , the final formulas are

Q0 � k � � ρ
m

N � 1

∑
i � 1

� 
 S � zi � � βizi

k
� � βi

k2 � � ekzi � 1
�

ekzi � � βi

k2 � zi � 1ekzi � 1
�

zie
kzi � � (A.5)

Q1 � k � � ρ
m

N � 1

∑
i � 1

� zG

k
� βizi

�
S � zi � � � S � zi � �

βi � zi � zG �
k2 � 2βi

k3 � � ekzi � 1
�

ekzi � (A.6)

� � S � zi � �
βi � zi � zG �
k

� 2βi

k2 � � zi � 1ekzi � 1
�

zie
kzi �

� βi

k
� z2

i � 1ekzi � 1
�

z2
i ekzi � 


For the time domain model, the integral used in the evaluation of the Froude–Krylov forces (equation
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2.44) is the same as that for Q0 � k � ,�
F j

w � i � ρω2
i Ai sin � jωi∆t � t0 � φi ��� S � 0 � �

S � � H � e � kiH (A.7)� N � 1

∑
n � 1

� 
 S � zn � � βnzn

ki
� � βn

k2
i
� � ekizn � 1

�
ekizn � � βi

k2
i

� zn � 1ekizn � 1
�

zie
kizn ��� 
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